Оператор Лапласа

Опера́тор Лапласа́ (Лапласиан) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом Δ. Функции F он ставит в соответствие число ({\partial^2 \over \partial x_1^2} + {\partial^2 \over \partial x_2^2} + \ldots + {\partial^2 \over \partial x_n^2}) F.

В сферических координатах:

\Delta f = {1 \over r^2} {\partial \over \partial r} \left( r^2 {\partial f \over \partial r} \right) + {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}. или \Delta f = {1 \over r} {\partial^2 \over \partial r^2} \left( rf \right) + {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}.

Оператор Лапласа часто записывается следующим образом \nabla^2\varphi, то есть скалярное произведение оператора набла на себя.

Применение

Через данный оператор удобно записывать уравнения Лапласа, Пуассона и волновое уравнение, хотя наиболее простой вид последнее принимает с использованием оператора Даламбера (Даламбертиана).

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home