Логицизм

Логицизм — одно из направлений в основаниях математики, ставящее целью обосновать математику путем сведения ее исходных понятий к понятиям логики.

Мысль о сведении математики к логике высказывалась Лейбницем в конце 17 в. Практическое осуществление логицистического тезиса было предпринято в конце 19 — начале 20 вв. в работах Г. Фреге и Б. Рассела . Взгляд на математику как на часть логики обусловлен тем, что любую математическую теорему в аксиоматической системе можно рассматривать как некоторое утверждение о логическом следовании. Остается только все встречающиеся в таких утверждениях константы определить через логические термины. К концу 19 в. в математике различные виды чисел, включая комплексные, были определены в терминах натуральных чисел и операций над ними. Попытка сведения натуральных чисел к логическим понятиям была предпринята Г. Фреге. В интерпретации Г. Фреге натуральные числа были кардинальными числами некоторых понятий. Однако система Фреге не свободна от противоречий. Это выяснилось, когда Рассел обнаружил противоречие в канторовой теории множеств (см. парадокс Рассела), пытаясь свести ее к логике. Обнаруженное противоречие побудило Рассела к пересмотру взглядов на логику, которую он сформулировал в виде теории разветвленных типов. Однако построение математики на основе теории типов потребовало принятия аксиом, которые неестественно считать чисто логическими. К ним относятся, например, аксиома бесконечности, которая утверждает, что существует бесконечно много индивидов, то есть объектов наинизшего типа.

В целом попытка сведения математики к логике не удалась. Как показал Гёдель, никакая формализованная система логики не может быть адекватной базой математики.

Литература

  • Frege G., Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, Bd 1—2, Jena, 1893—1903;
  • Whitehead A. N., Russell В., Principia Mathematica, Gamb., 1910;
  • Godel K., «Monatsh. Math, und Phys.», 1931, Bd 38, S. 173—98;
  • Карри Х., Основания математической логики, пер. с англ., М., 1969;
  • Френкель А.- А., Бар-Xиллел Н., Основания теории множеств, нер. с англ., М., 1966.
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home