Пространство элементарных событий

Пространство элементарных событиймножество Ω всех взаимно или попарно исключающих друг друга исходов случайного эксперимента, которые вместе образуют полную группу событий.

Элемент этого множества \omega \in \Omega называется элементарным событием или исходом. Пространство элементарных событий называется дискретным, если число его элементов конечно или счётно. Любое пространство элементарных событий не являющееся дискретным, называется недискретным, и при этом, если наблюдаемыми результатами (нельзя произносить случайными событиями) являются точки того или иного числового арифметического или координатного пространства, то пространство называется непрерывным (континиум). Пространство элементарных событий Ω вместе с алгеброй событий \mathcal{F} и вероятностью \mathbf{P} образует тройку (\Omega, \mathcal{F}, \mathbf{P}), которая называется вероятностным пространством.

См.также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home