Архимед

Архиме́д (др.-греч. Αρχιμήδης287 до н. э.212 до н. э.) — древнегреческий математик, механик и инженер из Сиракуз. Отцом его был астроном Фидий, который привил сыну с детства любовь к математике, механике и астрономии.

В Александрии Египетской — научном и культурном центре того времени — Архимед познакомился со знаменитыми александрийскими учеными: астрономом Кононом, разносторонним учёным Эратосфеном, с которыми потом переписывался до конца жизни. В то время Александрия славилась своей библиотекой, и которой было собрано более 700 тыс. рукописей. По-видимому, именно здесь Архимед познакомился с трудами Демокрита, Евдокса и других замечательных греческих геометров, о которых он упоминал и своих сочинениях.

Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Известен рассказ о том как Архимед сумел определить, сделана ли корона царя Гиерона из чистого золота или ювелир подмешал туда значительное количество серебра. Удельный вес золота был известен, но трудность состояла в том, чтобы точно определить объём короны: ведь она имела неправильную форму! Архимед всё время размышлял над этой задачей. Как-то он принимал ванну, и тут ему пришла в голову блестящая идея: погружая корону в воду, можно определить её объём, измерив, объём вытесненной ею воды. Согласно легенде, Архимед выскочил голый на улицу с криком «Эврика!», т. е, «Нашёл!». И действительно в этот момент был открыт основной закон гидростатики.

Другая легенда рассказывает, что построенный Гиероном в подарок египетскому царю Птолемею роскошный корабль «Сирокосия» никак не удавалось спустить на воду. Архимед соорудил систему блоков (полиспаст), с помощью которой он смог проделать эту работу одним движением руки. Этот случай или размышления Архимеда над принципом рычага послужили поводом для его крылатых слов: «Дайте мне точку опоры, и я сдвину Землю».

Архимед прославился и другими механическими конструкциями. Изобретённый им бесконечный, или архимедов, винт для вычерпывания воды до сих пор применяется в Египте. Архимед построил планетарий или «небесную сферу», при движение которой можно было наблюдать движение пяти планет, восход Солнца и Луны, фазы и затмения Луны, исчезновение обоих тел за линией горизонта.

Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 до н. э.. А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули.

Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело… римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца». Но даже во время осады Архимед не давал покоя римлянам. По легенде, во время осады римский флот был сожжён защитниками города, которые при помощи зеркал и отполированных до блеска щитов сфокусировали на них солнечные лучи по приказу Архимеда.

Только вследствие измены Сиракузы были взяты римлянами осенью 212 до н. э.. При этом Архимед был убит. Плутарх сохранил нам яркий рассказ о его смерти: «К Архимеду подошёл солдат и объявил, что его зовёт Марцелл. Но Архимед настойчиво просил его подождать одну минуту, чтобы задача, которой он занимался, не осталась нерешённой. Солдат, которому не было дела до его доказательства, рассердился и пронзил его своим мечом».

Архимед был замечательным механиком-практиком и теоретиком, но основным делом его жизни была математика. По словам Плутарха, Архимед был просто одержим ею. Он забывал о пище, совершенно не заботился о себе. Его работы относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида x^2 (a \pm x) = b, корни которых он находил с помощью пересечения параболы и гиперболы. Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать.

Остались отрывки работы Архимеда, в которой он развивает математическую теорию популярной в Греции игры (так называемой стомахии), предвосхищая, таким образом, более чем на 2 тыс. лет создание математической теории игр. Но главное его внимание было сосредоточено на трёх типах проблем:

  1. Определение площадей криволинейных фигур или соответственно, объёмов тел. Мы уже знаем, как определять площади прямолинейных фигур, площадь круга, объём призмы, пирамиды, цилиндра и конуса. Все это умели делать греки и до Архимеда. Но только он нашёл общий метод, позволяющий найти любую площадь или объём. Трудно переоценить значение этого метода, без которого была бы немыслима ни физика, ни астрономия. Идеи Архимеда легли в основу интегрального исчисления. Сам Архимед определил с помощью своего метода площади и объёмы почти всех тел, которые рассматривались в античной математике. Лучшим своим достижением он считал определение поверхности и объёма шара. Он просил выбить на своей могиле шар, вписанный в цилиндр.
  2. Пусть дана некоторая кривая линия. Как определить касательную в любой её точке? Или, если переложить эту проблему на язык физики, пусть нам известен путь некоторого тела в каждый момент времени. Как определить скорость его в любой точке? В школе учат, как проводить касательную к окружности. Древние греки умели, кроме того, находить касательные к эллипсу, гиперболе и параболе. Первый общий метод решения и этой задачи был найден Архимедом. Этот метод впоследствии лёг в основу дифференциального исчисления.
  3. В математике, физике и астрономии очень важно уметь находить наибольшие и наименьшие значения изменяющихся величин — их экстремумы. Например, как среди цилиндров, вписанных в шар, найти цилиндр, имеющий наибольший объём? Все такие задачи в настоящее время могут быть решены с помощью дифференциального исчисления. Архимед первым увидел связь этих задач с проблемами определения касательных и показал, как с можно решать задачи на экстремумы. Огромное значение для развития математики имело вычисленное Архимедом отношение длины окружности к диаметру.

Идеи Архимеда почти на два тысячелетия опередили своё время. Только в XVII в. [1]учёные смогли продолжить и развить труды великого греческого математика. Только тогда было раскрыто их подлинное значение.

Примечание

  1. Г. В. Лейбниц писал:
    "Внимательно читая сочинения Архимеда, перестаёшь удивляться всем новым открытиям геометров".

Ссылки

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home